LOCUS DQ181611 615 bp DNA linear INV 26-SEP-2005
DEFINITION Apis mellifera pop-variant Burzyanski, Borti NADH
 dehydrogenase
 subunit 2 (ND2) gene, partial cds; mitochondrial.
ACCESSION DQ181611
VERSION DQ181611.1 GI:75863966
KEYWORDS .
SOURCE mitochondrion Apis mellifera (honey bee)
 Apoidea;
 Apidae; Apis.
ORGANISM Apis mellifera
Eukarya; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
 Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata;
 from mitochondrial DNA sequence in Urals
 Unpublished
REFERENCE 1 (bases 1 to 615)
 Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and
 Nikolenko, A.G.
 Phylogenetics researches in Apis mellifera mellifera L.
 concluded
 Direct Submission
 Submitted (29-AUG-2005) Russian Academy of Sciences, Ufa
 Center, Institute of Biochemistry and Genetics, Prospect
 Octyabrya, 71, Ufa 450054, Russia
FEATURES Location/Qualifiers
 source
 /organism="Apis mellifera"
 /organelle="mitochondrion"
 /mol_type="genomic DNA"
 /db_xref="taxon:7460"
 /sex="worker"
 /tissue_type="thorax"
 /dev_stage="adult"
 /pop_variant="Burzyanski, Borti"
 /country="Russia: Bashkortostan"
 /gene
 /gene="ND2"
 /cDS
 /gene="ND2"
 /codon_start=1
 /transl_table=5
 /product="NADH dehydrogenase subunit 2"
 /protein_id="ABA29194.1"
 /db_xref="GI:75863967"

 /translation="MFFMNFKRYHWFIVLHYFVLMNSNNIFQWLMMEFEGTISIS"
 LINIKSTNKTPLIYYSVSVEISSIFLFFMIIVYLSISFTKDTDFNVQMMFFLKG"
 TFFHFWMKSYEMMNWKQIFLMMSTLIKFIPIYMMVSMTKINSWTLYFLITNSLYISF
 YANKFYLKURLACSTIFNSFYFIFILELKNKNMFAMILYSFNY"
ORIGIN
 1 1ttttcttca 1tatatttttact 1ttttttttatttttttact 1ttttttttctt
421 actaaaat attcatgaac attatatatt ttaattacaa atagattata tatttcattt
481 tatgcaata aatttttac tctaaaaaa ttatagcat gctcaacaat ttttatatta c
541 ttctatattt ttttatatttt agaattaac aaaaatat a t t a g c a t a a a
601 tattcattta attat

//

LOCUS DQ181612 618 bp DNA linear INV 26-SEP-2005
DEFINITION Apis mellifera pop-variant Burzyanskii, Kapova NADH dehydrogenase subunit 2 (ND2) gene, partial cds; mitochondrial.
ACCESSION DQ181612
VERSION DQ181612.1 GI:75863968
KEYWORDS .
SOURCE mitochondrion Apis mellifera (honey bee)
ORGANISM Apis mellifera
Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata;
Apoidea;
REFERENCE 1 (bases 1 to 618)
AUTHORS Ilyasov,R.A., Baymiev,A.K., Poskryakov,A.V. and Nikolenko,A.G.
TITLE Phylogenetics researches in Apis mellifera mellifera L. concluded from mitochondrial DNA sequence in Urals
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 618)
AUTHORS Ilyasov,R.A., Baymiev,A.K., Poskryakov,A.V. and Nikolenko,A.G.
TITLE Direct Submission
JOURNAL Submitted (29-AUG-2005) Russian Academy of Sciences, Ufa Scientific Center, Institute of Biochemistry and Genetics, Prospect Octyabrya, 71, Ufa 450054, Russia
FEATURES source 1..618
/organism="Apis mellifera"
/organelle="mitochondrion"
mol_type="genomic DNA"
/db_xref="taxon:7460"
/sex="worker"
tissue_type="thorax"
dev_stage="adult"
pop_variant="Burzyanskii, Kapova"
/country="Russia: Bashkortostan"
1..>618
/gene
CDS 1..>618
/gene="ND2"
/codon_start=1
/transl_table=5
/product="NADH dehydrogenase subunit 2"
/protein_id="ABA29195.1"
/db_xref="GI:75863969"

/translation="MFFMNFKYHWFIVYLLITIFVLMWNNINIFQ6WMLMEFGTIISIS
LINIKSTNKPSLIVITYSVISIILFFMIIVYLSSISFTKDFTFNEVMQMMFLKIG
TFFHFWMYIESWMNNKQIFLMMLSLIKIFIPYIMVMSTKINSWTLYFLITTSYISF
YANKYFTILKLLACSTIFNSFYFIFILELNKNMMFMIAMILYSFNYF"
ORIGIN 1 attttcttca taatattttaa ataccaactgt ttttatatttc attttttgta
61 ttaatatatt attccaataaa tatttttattt caatgaatatt taatagatt tgtacaatc
<table>
<thead>
<tr>
<th>LOCUS</th>
<th>DQ181613</th>
<th>614 bp</th>
<th>DNA</th>
<th>linear</th>
<th>INV 26-SEP-2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINITION</td>
<td>Apis mellifera pop-variant Burzyanskii, Koran-Elga NADH dehydrogenase subunit 2 (ND2) gene, partial cds; mitochondrial.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCESSION</td>
<td>DQ181613</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VERSION</td>
<td>DQ181613.2</td>
<td>GI:76262983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEYWORDS</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOURCE</td>
<td>mitochondrion Apis mellifera (honey bee)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORGANISM</td>
<td>Apis mellifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Apoidea; Apidae; Apis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFERENCE</td>
<td>1 (bases 1 to 614)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTHORS</td>
<td>Ilyasov,R.A., Baymiev,A.K., Poskryakov,A.V. and Nikolenko,A.G.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE</td>
<td>concluded from mitochondrial DNA sequence in Urals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL</td>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFERENCE</td>
<td>2 (bases 1 to 614)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTHORS</td>
<td>Ilyasov,R.A., Baymiev,A.K., Poskryakov,A.V. and Nikolenko,A.G.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE</td>
<td>Direct Submission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL</td>
<td>Submitted (29-AUG-2005) Russian Academy of Sciences, Ufa Scientific Octyabrya, 71, Ufa 450054, Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFERENCE</td>
<td>3 (bases 1 to 614)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTHORS</td>
<td>Ilyasov,R.A., Baymiev,A.K., Poskryakov,A.V. and Nikolenko,A.G.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE</td>
<td>Direct Submission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL</td>
<td>Submitted (26-SEP-2005) Russian Academy of Sciences, Ufa Scientific Octyabrya, 71, Ufa 450054, Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMARK</td>
<td>Sequence update by submitter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMENT</td>
<td>On Sep 26, 2005 this sequence version replaced gi:75863970.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEATURES</td>
<td>Location/Qualifiers source 1..614 /organism="Apis mellifera" /organelle="mitochondrion" /mol_type="genomic DNA" /db_xref="taxon:7460" /sex="worker" /tissue_type="thorax" /dev_stage="adult" /pop_variant="Burzyanskii, Koran-Elga" /country="Russia: Bashkortostan"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gene 1..614 /gene="ND2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDS 1..614 /gene="ND2" /codon_start=1 /transl_table=5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LOCUS
DQ181614 612 bp DNA linear INV 26-SEP-2005

DEFINITION
Apis mellifera pop-variant Tatayshinskaya - Salavat NADH dehydrogenase subunit 2 (ND2) gene, partial cds; mitochondrial.

ACCESSION
DQ181614

VERSION
DQ181614.1 GI:75863972

KEYWORDS
mitochondrion Apis mellifera (honey bee)

ORGANISM
Apis mellifera

| Apoidea; |
| Apidae; Apis. |

REFERENCE
1 (bases 1 to 612)

| AUTHORS | Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and Nikolenko, A.G. |
| TITLE | Phylogenetics researches in Apis mellifera mellifera L. concluded from mitochondrial DNA sequence in Urals |

JOURNAL
Unpublished

REFERENCE	2 (bases 1 to 612)
AUTHORS	Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and Nikolenko, A.G.
TITLE	Direct Submission

JOURNAL
Submitted (29-AUG-2005) Russian Academy of Sciences, Ufa Scientific Center, Institute of Biochemistry and Genetics, Prospect Octyabrya, 71, Ufa 450054, Russia

FEATURES

<table>
<thead>
<tr>
<th>source</th>
<th>Location/Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>/organism="Apis mellifera"</td>
<td></td>
</tr>
<tr>
<td>/organelle="mitochondrion"</td>
<td></td>
</tr>
<tr>
<td>/db_xref="taxon:7460"</td>
<td></td>
</tr>
<tr>
<td>/sex="worker"</td>
<td></td>
</tr>
<tr>
<td>/tissue_type="thorax"</td>
<td></td>
</tr>
<tr>
<td>/dev_stag="adult"</td>
<td></td>
</tr>
<tr>
<td>/pop_variant="Tatayshinskaya - Salavat"</td>
<td></td>
</tr>
<tr>
<td>/country="Russia: Bashkortostan"</td>
<td></td>
</tr>
<tr>
<td>gene</td>
<td>1..612</td>
</tr>
<tr>
<td>CDS</td>
<td>1..612</td>
</tr>
</tbody>
</table>
LOCUS DQ181615 633 bp DNA linear INV 26-SEP-2005
DEFINITION Apis mellifera pop-variant Tatyshlinskaya - Salavat 2 NADH dehydrogenase subunit 2 (ND2) gene, partial cds; mitochondrial.
ACCESSION DQ181615
VERSION DQ181615.1 GI:75863974
KEYWORDS mitochondrial Apis mellifera (honey bee)
SOURCE mitochondrion Apis mellifera ; Apidae; Apis.
ORGANISM Apis mellifera
Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata;
Reference from mitochondrial DNA sequence in Urals
REFERENCE 1 (bases 1 to 633)
AUTHORS Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and Nikolenko, A.G.
TITLE Phylogenetics researches in Apis mellifera L. concluded
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 633)
AUTHORS Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and Nikolenko, A.G.
TITLE Direct Submission
JOURNAL Submitted (29-AUG-2005) Russian Academy of Sciences, Ufa
Scientific Octyabrya, 71, Ufa 450054, Russia
FEATURES source
Location/Qualifiers
1..633
/organism="Apis mellifera"
/organanelle="mitochondrion"
/mol_type="genomic DNA"
/db_xref="taxon:7460"
/sex="worker"
/tissue_type="thorax"
/dev_stage="adult"
/pop_variant="Tatyshlinskaya - Salavat 2"
/country="Russia: Bashkortostan"
LOCUS
DQ181616

DEFINITION
Apis mellifera pop-variant Tatylshlinskaya - Shulganovo NADH dehydrogenase subunit 2 (ND2) gene, partial cds; mitochondrial.

ACCESSION
DQ181616

VERSION
DQ181616.1

KEYWORDS

SOURCE
mitochondrion Apis mellifera (honey bee)

ORGANISM
Apis mellifera

**Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Apoidea;
Apide; Apis.

REFERENCE
1 (bases 1 to 613)

AUTHORS
Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and Nikolenko, A.G.

TITLE
Phylogenetics researches in Apis mellifera mellifera L. concluded from mitochondrial DNA sequence in Urals

JOURNAL
Unpublished

REFERENCE
2 (bases 1 to 613)

AUTHORS
Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and Nikolenko, A.G.

TITLE
Direct Submission

JOURNAL
Submitted (29-AUG-2005) Russian Academy of Sciences, Ufa

Scientific
Center, Institute of Biochemistry and Genetics, Prospect Octyabrya, 71, Ufa 450054, Russia

FEATURES

<table>
<thead>
<tr>
<th>source</th>
<th>Location/Qualifiers</th>
<th>1..1613</th>
</tr>
</thead>
<tbody>
<tr>
<td>/organism="Apis mellifera"</td>
<td>/organelle="mitochondrion"</td>
<td></td>
</tr>
</tbody>
</table>

/mol_type="genomic DNA" |
/db_xref="taxon:7460" |
/sex="worker" |
/tissue_type="thorax" |
LINIKSTNKTPSLIYYSVSVISSIFLFFIMIVYLSSISISFTKTDIFNMVQMMFFLKIG

TFPHFWMIYSYEMMNWKQIPFMLSTLIKFIPIYMMVMSMTKINSWTLYFLITNSLYSF
YANKFVTLKLLACSTIFNSFYFIFILELNKNMFIAMIIYLFNYFLLISF

ORIGIN
1 attttcttca taatctttaa ataccactgta tttatttatt ctttatattgta
61 ttaaatatat attcctaata tatttttt actaatatt tatgtcactc
121 attagacttat attctatata caaaaatata cctctcccc ageaatattc
tatttagttc ctatattat cttatatatt cttatatatt
181 tcgtagttc tagtatattt atttttatatt ctttagtactc attatatata
tatattatc attaatatt ctttatattc
241 cattttactt attatatatt ctttacttatt cttatatatt
301 catatttacttt actaatattt atttatatt attatatatt
361 atatattttact tatttattact tatttattact tatttattact
tattttatt actaatatt attatatatt attatatatt tttatatatt attatatatt
421 cttatattact tattatatt cttatatatt cttatatatt
tatttatatt attatatatt attatatatt attatatatt attatatatt
481 cdtttattacttatt atattacttatt atattacttatt attatatatt
541 attattacttt attatatatt actaatatt actaatatt actaatatt
601 attatatatt attatatatt attatatatt attatatatt attatatatt

LOCUS DQ181618
DEFINITION Apis mellifera pop-variant Visherskaya - Antipin II 2 NADH dehydrogenase subunit 2 (ND2) gene, partial cds; mitochondrial.
ACCESSION DQ181618
VERSION DQ181618.1 GI:75863980
KEYWORDS mitochondrion Apis mellifera (honey bee)
ORGANISM Apis mellifera
SOURCE Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Apoidea;
REFERENCE 1 (bases 1 to 613)
AUTHORS Ilyasov,R.A., Baymiev,A.K., Poskryakov,A.V. and Nikolenko,A.G.
TITLE Phylogenetics researches in Apis mellifera mellifera L.
concluded from mitochondrial DNA sequence in Ursals
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 613)
AUTHORS Ilyasov,R.A., Baymiev,A.K., Poskryakov,A.V. and Nikolenko,A.G.
TITLE Direct Submission
JOURNAL Submitted (29-AUG-2005) Russian Academy of Sciences, Ufa Scientific Center, Institute of Biochemistry and Genetics, Prospect Octyabrskaya, 71, Ufa 450054, Russia
FEATURES
source 1..613
/organism="Apis mellifera"
/organellle="mitochondrion"
/mol_type="genomic DNA"
/db_xref="taxon:7460"
/sex="worker"
/tissue_type="thorax"
/dev_stage="adult"
/pop_variant="Visherskaya - Antipin II 2"
/country="Russia: Bashkortostan"

gene

1..>613
/gene="ND2"

CDS

1..>613
/gene="ND2"
/codon_start=1
/transl_table=5
/product="NADH dehydrogenase subunit 2"
/protein_id="ABA29201.1"
/db_xref="GI:75863981"

/translation="MFFMNFKYHWFTYLLITFIVLMMNSNNIFIQWMLMEFGTIISISLINIKSTNKTFSLIYYSVSVISSIFLFFMIIVYLSSISFTKTDFNFVMVMMFFLKIG

TFFPHWEIYSEMMNWQIPFLMSTLKIPIFRYIMMVSMKTINSWTLYFLINTNSLYISFYANKYFNLKMLACSTFNFSFYFIFILELKNMFIAMIILYSFN"

ORIGIN

1 atttttctca taatttttta ataccactga ttatcatttc tttaatattc tatattttgttatattttaatatcattattaatc tattatattat cagatgtgta cattatcatcc
d12 tattagattt aattaattta aattaattta aattaattta aattaattta aattaattta aattaattta aattaattta aattaattta aattaattta aattaattta
181 tcagtacg taattttcaag aatatattttta ttttttttaa ttatttgata cttatcatcc
c241 attagattta ctaaaacaacat ttttttttaa ttattttttttat cttatcatcc
d361 attggaacat ccccccttca ttttttgaata attatatttttttttttattt
FEATURES
 source 1..620
 /organism="Apis mellifera"
 /organelle="mitochondrion"
 /mol_type="genomic DNA"
 /db_xref="taxon:7460"
 /sex="worker"
 /tissue_type="thorax"
 /dev_stage="adult"
 /pop_variant="Visherskaya - Antipin NT"
 /country="Russia: Bashkortostan"
 gene 1..620
 /gene="ND2"
 CDS 1..620
 /gene="ND2"
 /codon_start=1
 /transl_table=5
 /product="NADH dehydrogenase subunit 2"
 /protein_id="ABA29202.1"
 /db_xref="GI:75863983"

/translation="MFFMNFKYHWFHFIYLLITIFVLMMNSNNIFIQWMLMEFGTIISIS"

LINIKSTNKTPSLIIYYSVSVISSIFLFFMIIYVLSSISFTKTDFTNFVMQMMFLKIG

TFFFHWMIYSEYYMNWKQIFLMLSTLKLFIPIFIYMMSMTKINSWLYFLITNSLYSF
YANKFYTLKKLACSTIFNSFYFIFILELNKNMFIAMILYSFYNFY"

ORIGIN
1 attttcttca taaatcttaa ataccactga tttatatct ttttatctt tttatgta
61 tttaataata attccaatca tttttattt catatgatat tggtaaattt
121 attagatta gattaataa tattaaatcc acaataataa ccctactaat aatttattat
181 tcagttcatc taattctaac aatatttttt ttttttataa ttattgata ctaattcatcc
241 attagatta ctaaaccaga tcttttat ttttatagtc aaatattat tttttttaaa
301 atgggaactt tccctctcta ttttttattt tattatttta attaataa taaatttaaag
361 caattttttt taatattcaac attaatataa ttttctcaa ttttatataa agttctataa
421 ctaattaa atattcatgac attatatttt tttattacaa atgattataa tatattatttt
481 tatgattata aatttttac tcttttataa ttattctatt gctataaatt ttatttttta
541 ttcttttttt tttttttttt agaatattac aaaaatttat ttattgctat attattttta
601 tattcatttt atttttttttt

LOCUS DQ181620 617 bp DNA linear INV 26-SEP-2005
DEFINITION Apis mellifera pop-variant Yuzhno-Prikamskaya - Chastye NADH dehydrogenase subunit 2 (ND2) gene, partial cds; mitochondrial.
ACCESSION DQ181620
VERSION DQ181620.1
KEYWORDS .
SOURCE mitochondrion Apis mellifera (honey bee)
ORGANISM Apis mellifera
 Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata;
Apoidea;
REFERENCE Apidae; Apis.
AUTHORS Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and Nikolenco, A.G.
TITLE concluded Phylogenetics researches in Apis mellifera mellifera L.
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 617)
AUTHORS Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and Nikolenco, A.G.
TITLE Direct Submission
JOURNAL Submitted (29-AUG-2005) Russian Academy of Sciences, Ufa Scientific Center, Institute of Biochemistry and Genetics, Prospect Octyabrya, 71, Ufa 450054, Russia

FEATURES

- **source**
 - Location/Qualifiers
 - 1..617
 - /organism="Apis mellifera"
 - /organelle="mitochondrion"
 - /mol_type="genomic DNA"
 - /db_xref="taxon:7460"
 - /sex="worker"
 - /tissue_type="thorax"
 - /dev_stage="adult"
 - /pop_variant="Yuzhno-Prikamskaya - Chastye"
 - /country="Russia: Bashkortostan"

- **gene**
 - 1..617
 - /gene="ND2"

- **CDS**
 - 1..617
 - /gene="ND2"
 - /codon_start=1
 - /transl_table=5
 - /product="NADH dehydrogenase subunit 2"
 - /protein_id="ABA29203.1"
 - /db_xref="GI:75863985"

/translation="MFFMNFRHWFYILLTIFVLMMNSNNIFIQWMLMEFGTIISIS"

ORIGIN

- 1 attttctca taatatttta taacacctga ttttttttac tatttttttttat
ttttttttatactgacatgtttttttta ttttttttttta ttttttttttttttttttttttttttta
- 61 tt
<table>
<thead>
<tr>
<th>JOURNAL</th>
<th>Unpublished</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE</td>
<td>2 (bases 1 to 620)</td>
</tr>
<tr>
<td>AUTHORS</td>
<td>Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and Nikolenko, A.G.</td>
</tr>
<tr>
<td>TITLE</td>
<td>Direct Submission</td>
</tr>
<tr>
<td>JOURNAL</td>
<td>Submitted (29-AUG-2005) Russian Academy of Sciences, Ufa Scientific Center, Institute of Biochemistry and Genetics, Prospect Ocnyabrya, 71, Ufa 450054, Russia</td>
</tr>
<tr>
<td>FEATURES</td>
<td>Location/Qualifiers</td>
</tr>
<tr>
<td>source</td>
<td>1..620</td>
</tr>
<tr>
<td>/organism</td>
<td>"Apis mellifera"</td>
</tr>
<tr>
<td>/organelle</td>
<td>"mitochondrion"</td>
</tr>
<tr>
<td>/mol_type</td>
<td>"genomic DNA"</td>
</tr>
<tr>
<td>/db_xref</td>
<td>"taxon:7460"</td>
</tr>
<tr>
<td>/sex</td>
<td>"worker"</td>
</tr>
<tr>
<td>/tissue_type</td>
<td>"thorax"</td>
</tr>
<tr>
<td>/dev_stage</td>
<td>"adult"</td>
</tr>
<tr>
<td>/pop_variant</td>
<td>"Yuzhno-Prikamskaya - Nytvenskaya"</td>
</tr>
<tr>
<td>/country</td>
<td>"Russia: Bashkortostan"</td>
</tr>
<tr>
<td>gene</td>
<td>1..620</td>
</tr>
<tr>
<td>/gene</td>
<td>"ND2"</td>
</tr>
<tr>
<td>CDS</td>
<td>1..620</td>
</tr>
<tr>
<td>/gene</td>
<td>"ND2"</td>
</tr>
<tr>
<td>/codon_start</td>
<td>1</td>
</tr>
<tr>
<td>/transl_table</td>
<td>5</td>
</tr>
<tr>
<td>/product</td>
<td>"NADH dehydrogenase subunit 2"</td>
</tr>
<tr>
<td>/protein_id</td>
<td>"ABA29204.1"</td>
</tr>
<tr>
<td>/db_xref</td>
<td>"GI:75863987"</td>
</tr>
</tbody>
</table>

/translating="MFFMFKYHYWFIYLLLITIFVLMMNSNNIFIQWMLMEFTGIIISIS"

LINIKSTNKTFSLIYYSVSVSISSIFLFFMIIYVLSISFTKTDFNFMVQMMFFLKIG

TFFPHWMIYSYEMMNWKIQIFLMSTLIFKFIPIYMVMVSMTRKINSWTLYFLITNSLYISF

YANKFYTLKIIKLCSTIFNSFYFIFIELDNKMIFAMIILYSFNYF"

| ORIGIN | 1 aatttctca taatatttctt ataccactga ttattttatct ttaatttatc
| | 61 ttataaatga attccaataa tatattttatt tatagatttat tggtacatc
| | 121 attagaatta tattaatttac caaaaaattt ccacagaattt atttatattt
| | 181 ttcagttacat aatttttattttt tattttattttatttt atttttttatttatttt
| | 241 attacattcta tttttttttttttt attttatttttttttttt attt
Phylogenetics researches in Apis mellifera mellifera L. concluded from mitochondrial DNA sequence in Urals

Unpublished

Ilyasov, R.A., Baymiev, A.K., Poskryakov, A.V. and Nikolenko, A.G.

Direct Submission

Submitted (29-AUG-2005) Russian Academy of Sciences, Ufa Scientific Center, Institute of Biochemistry and Genetics, Prospect Octyabrya, 71, Ufa 450054, Russia

Location/Qualifiers

1..633
/organism="Apis mellifera"
/organelle="mitochondrion"
/mol_type="genomic DNA"
/db_xref="taxon:7460"
/sex="worker"
/tissue_type="thorax"
/dev_stage="adult"
/pop_variant="Yuzhno-Prikamskaya - Osinskaya"
/country="Russia: Bashkortostan"

1..633
/gene="ND2"

1..633
/gene="ND2"
/codon_start=1
/transl_table=5
/product="NADH dehydrogenase subunit 2"
/protein_id="ABA29205.1"
/db_xref="GI:75863989"

/translation="MFPMNFKYHWFYLLLIFVLMNMNSNNIFIQWMLMEFGTIISIS LINIKSTNKTFSLlYYSVSVISSIONFLFFMIIIVYLSISFSTKTDTDFNVQMMFQLKIG TFPFHFWMIYSEMNMNWKQIFLMSTLIKFIPIYMMVSMTKINSWTLFYFLITNSLYISF YANKFYLKLKLACSTIFNSFYFIFILELNKNMFIAMIILYSFNYFLLLISF"

YANKFUTLKLKLLACSTIFNSFYFIFILELNKNMFIAMIILYSFNYFLLLISF"

1 attttcttca taatattttaa ataccactga ttttatttac ttttttttga 61 ttaaaaattta atcccaataa tattttttatt caatgaatatt ttaaatatttc 121 attagaatta gatttaattt tt